Neural Networks learn Representation Theory: Reverse Engineering how Networks perform Group Operations

Bilal Chughtai, Lawrence Chan, Neel Nanda

PROGRESS MEASURES FOR GROKKING VIA MECHANISTIC INTERPRETABILITY

Neel Nanda Independent neelnanda27@gmail.com Lawrence Chan UC Berkeley chanlaw@berkeley.edu Tom Lieberum Independent tlieberum3141@gmail.com

Jess Smith Independent smith.jessk@gmail.com Jacob Steinhardt UC Berkeley jsteinhardt@berkeley.edu

Mystery: Why do models grok?

GROKKING: GENERALIZATION BEYOND OVERFIT-TING ON SMALL ALGORITHMIC DATASETS

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin V OpenAI

Vedant Misra* Google

Methodology: Apply mechanistic interpretability

Inspiration: Mechanistic Interpretability

- **Goal:** Reverse engineer neural networks
- **Hypothesis**: Models learn human-comprehensible algorithms and can be understood, if we learn how to make it legible
- Models learn **circuits**, algorithms encoded in the weights
- Motivation: A deep knowledge of circuits is crucial to understand and predict model behaviour

Universality

Curve detectors

ALEXNET

Krizhevsky et al. [34]

INCEPTIONV1

Szegedy et al. [26]

VGG19

j

High-Low Frequency detectors

RESNETV2-50 He et al, [36]

Simonyan et al. [35]

Computes logits using further trig identities: $\text{Logit}(c) \propto \cos(w(a+b-c))$ $= \cos(w(a+b))\cos(wc) + \sin(w(a+b))\sin(wc)$

Calculates sine and cosine of a + b using trig identities: $\sin(w(a+b)) = \sin(wa)\cos(wb) + \cos(wa)\sin(wb)$ $\cos(w(a+b)) = \cos(wa)\cos(wb) - \sin(wa)\sin(wb)$

Translates one-hot a, b to Fourier basis: $a \rightarrow \sin(wa), \cos(wa)$ $b \rightarrow \sin(wb), \cos(wb)$

 $\cos w(a+b-c)$

Representation Theory

Definition 11.2.1 A representation of a group G on a vector space V is a group homomorphism

 $\rho: G \to \mathbf{GL}(\mathbf{V}).$

We say that ρ is a representation of G.

 $\rho(g_1g_2) = \rho(g_1)\rho(g_2), \quad \text{for all } g_1, g_2 \in G.$

Translates one-hot a,b to representation matrices: $a, b \mapsto \rho(a), \rho(b)$

Performs matrix multiplication on representations via ReLUs: $\rho(a), \rho(b) \mapsto \rho(a)\rho(b) = \rho(ab)$

Computes logits by multiplying by $\rho(c^{-1})$ and taking the trace: $\text{Logit}(c) \propto \chi_{\rho}(abc^{-1}) = \text{tr}(\rho(abc^{-1}))$

Reverse Engineering S5

- 1. Logit similarity
- 2. Embeddings
- 3. MLP activations & the MLP Logit map
- 4. Ablations

Weak Universality

Table 3. Results from all groups on both MLP and Transformer architectures, averaged over 4 seeds. We find that that features for matrices in the key representations are learned consistently, and explain almost all of the variance of embeddings and unembeddings. We find that terms corresponding to $\rho(ab)$ are consistently present in the MLP neurons, as expected by our algorithm. Excluding and restricting to these terms in the key representations damages performance/does not affect performance respectively.

	MLP								Transformer						
	FVE					Loss			FVE				Loss		
Group	W_a	W_b	W_U	MLP	$\rho(ab)$	Test	Exc.	Res.	W_E	W_L	MLP	$\rho(ab)$	Test	Exc.	Res.
C113	99.53%	99.39%	98.05%	90.25%	12.03%	1.63e-05	5.95	6.88e-03	95.18%	99.52%	92.12%	16.77%	2.67c-07	9.42	2.12e-02
C118	99.75%	99.74%	98.43%	95.84%	13.26%	5.39e-06	8.72	3.60e-03	94.05%	99.64%	94.63%	17.11%	1.73e-07	15.93	2.55e-01
D59	99.71%	99.73%	98.52%	87.68%	12.44%	6.34e-06	12.37	1.60e-06	98.58%	98.53%	85.01%	10.85%	3.20e-06	46.42	2.82e-05
D61	99.26%	99.45%	98.26%	87.61%	12.48%	1.79e-05	12.00	1.69e-06	98.33%	97.40%	85.59%	11.11%	1.63e-02	41.64	9.60e-02
Ss	100.00%	99.99%	94.14%	88.91%	12.13%	1.02e-05	11.72	2.21e-07	99.84%	99.97%	85.28%	10.23%	1.43e-07	17.77	4.44c-09
Se	99.65%	99.78%	93.67%	86.38%	8.98%	4.95e 05	12.17	2.66e 06	99.94%	99.93%	86.32%	9.35%	2.21e 06	291.67	1.05e 06
A_5	99.04%	99.31%	93.27%	86.69%	10.26%	1.94e-05	9.82	5.28e-07	97.53%	97.40%	83.56%	8.22%	4.88c-02	19.76	7.70e-04

Strong Universality

Takeaways

- Models naturally learn representation theory.
- Mechanistic interpretability is useful.
- Reverse engineering a single network is insufficient for understanding behaviour in general.

Further Work

- Reverse engineering more group theoretic tasks.
- Understanding universality better in algorithmic / realistic tasks.
- Understanding network inductive biases better.