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Mystery: \Why do models grok?
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GROKKING: GENERALIZATION BEYOND OVERFIT-
TING ON SMALL ALGORITHMIC DATASETS
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Methodology: Apply mechanistic interpretability



Inspiration: Mechanistic Interpretability

e Goal: Reverse engineer neural networks
e Hypothesis: Models learn human-comprehensible algorithms and can be

understood, if we learn how to make it legible

e Models learn circuits, algorithms encoded in the weights

e Motivation: A deep knowledge of circuits is crucial to understand and predict

model behaviour

Windows (4b:237)
excite the car detector
at the top and inhibit
at the bottom.

Car Body (4b:491)
excites the car
detector, especially at
the bottom.

Wheels (4b:373) excite
the car detector at the
bottom and inhibit at
the top.

-
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® positive (excitation)
@ negative (inhibition)

is assembled from
earlier units.



Universality

Curve detectors High-Low Frequency detectors

ALEXNET

Krizhevsky etal.[34]

INCEPTIONV1

Szegedy etal.[28]

VGG19

Simonyan et al. [35]

RESNETV2-50

He etal.[38]




Logits

cos w(a+b-c

Computes logits using further trig identities:
Logit(c) «x cos(w(a + b — ¢))
= cos(w(a + b)) cos(we) + sin(w(a + b)) sin(wc)

Calculates sine and cosine of a + b using trig identities:
sin(w(a + b)) = sin(wa) cos(wb) + cos(wa) sin(wb)

cos(w(a + b)) = cos(wa) cos(wb) — sin(wa) sin(wb) Sl

Translates one-hot a, b to Fourier basis:
a — sin(wa), cos(wa)
b — sin(wb), cos(wb)



Representation Theory

Definition 11.2.1 A representation of a group G on a vector space V is
a group homomorphism
p: G — GL(V).

We say that p is a representation of G.

p(9192) = p(g1)p(g2),  forall g, g0 € G.



Tokens Translates one-hot a,b to
representation matrices:
Y
Embed a, b p(a), p(b)
v Performs matrix multiplication
MLP on representations via ReLUs:
p(a), p(b) — p(a)p(b) = p(ab)
Y
Unembed Computes logits by multiplying
v by p(c™1) and taking the trace:
Logits Logit(c) o< x,(abc™t) = tr(p(abe™1))
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Logit similarity

Embeddings

MLP activations & the MLP - Logit map
Ablations
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SIGN 6.95% 6.95% 9.58%
STANDARD 93.0% 93.0% 84.5%
RESIDUAL 0.00% 0.00% 5.96%
CLUSTER p(a) p(b) p(ab)  RESIDUAL
SIGN 33.3% 33.3% 33.3% 0.00%
STANDARD 39.6% 37.1% 11.3% 12.1%




Weak Universality

Table 3. Results from all groups on both MLP and Transformer architectures, averaged over 4 seeds. We find that that features for matrices
in the key representations are learned consistently, and explain almost all of the variance of embeddings and unembeddings. We find that
terms corresponding to p(ab) are consistently present in the MLP neurons, as expected by our algorithm. Excluding and restricting to
these terms in the key representations damages performance/does not affect performance respectively.

MLP Transformer

FVE Loss FVE Loss

Group W, Wy, Wy MLP plab) Test Exc. Res. Wg W, MLP plab) Test Exc. Res.

Ci13 99.53% 99.39% 98.05% 90.25% 12.03% 1.63¢-05 595 6.88¢-03 95.18% 99.52% 92.12% 16.77% 2.67e-07 9.42 2.12¢-02
Ci1s 9.75% 99.74% 98.43% 95.84% 13.26% 5.39¢-06 8.72 3.60e-03 94.05% 99.64% 94.63% 17.11% 1.73e-07 1593 2.55¢-01
Dsq 9.71% 99.73% 98.52% 87.63% 12.44% 6.34¢-06 12.37 1.60c-06 98.58% 98.53% 85.01% 10.85% 3.20e-06 46.42 2.82¢-05
Dgy 9.26% 99.45% 98.26% 87.61% 12.48% 1.79¢-05 12.00 1.6Ye-06 98.33% 97.40% 85.59% 1L11% 1.63e-02 41.64 9.60e-02

Sy 100.00% 99.99% 94.14% 88.91% 12.13% 1.02e-05 11.72 221e-07 99.84% 99.97% 85.28% 10.23% 1.43¢-07 17.77 4.44e-00
Sg 99.65% 99.78% 93.67% 826.38G 8.98% 4.95e 05 12.17 2.66¢ 06 99.94% 99.93% £6.326% 9.35% 2.21e 06 201.67 1.05e 06

As 99.04% 9931% 93.27% 86.69% 10.26% 1.94¢-05 9.82 5.28e-07 97.53% 97.40% 83.56% 3. 2% 4.88¢-02 19.76 7.70e-04




Strong Universality
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Takeaways

e Models naturally learn representation theory.

e Mechanistic interpretability is useful.

e Reverse engineering a single network is insufficient for understanding behaviour in
general.

Further Work

® Reverse engineering more group theoretic tasks.
e Understanding universality better in algorithmic / realistic tasks.
e Understanding network inductive biases better.



