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Introduction

e \We train models to perform group composition,
demonstrating via mechanistic interpretability that
networks consistently learn an interpretable,
representation theory theoretic algorithm, across

Group Composition via Representations Tokens Translates one-hot a,b to

representation matrices:

e Representation Theory bridges group theqry and linear algebra, = * : a.bs p(a), p(b)
and let’'s us think of group elements as matrices. Rk
e Formally, a representation is a homomorphism p : G — GL(R?)

Performs matrix multiplication
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various different tasks (groups) and architectures. eeg (, = {r’“ | r" = e} hasarep ()= (Zfﬁﬁ C(S)lsnﬁ ) MLP on representations via ReLUs:
e \We use progress measures to track the - | " " l p(a), p(b) — p(a)p(b) = p(abd)
development of this algorithm over training, and to e The task of modular addition reverse engineered by Nanda et al.
understand grokking. (2023) is group composition on the cyclic group. We are able to Unembed oo lopiia T mniltislving
e We use this as an algorithmic test bed for the directly generalise their algorithm to arbitrary groups using v by p(c™!) and taking the trace:
hypothesis of universality in mechanistic representation theory. Logits Logit(c) o x,(abc™1) = tr(p(abc™1))

interpretability. We find convincing evidence for a form
of weak universality, but against stronger forms.

Reverse Engineering S+ Universality -
Backg round We first reverse engineer a network trained to ] . y ||| — -
erform S5 composition, and find the GCR g e R——
Grokking: Power et al. (2022) found that small models zlgorithmsfs Iearirawed via four lines of evidence. %dd“g= o —
trained on algorithmic tasks such as modular addition, ’ e
. . . . sign U ||| |
quickly memorised training data, and then after training 1.Logit similarity in key representations. I 0 s B o

for a much longer time suddenly generalise.

observed sign ¥ standard

l — r“le(M | jg .; %’ The un Ive rs al Ity hypOth e SIS Clalms netWO rkS do not |e arn a d ho C and

- | » ey i arbitrary algorithms, but canonical solutions, so different models will

L g o b g . b -] tend to learn similar features and circuits.

, WO " UBpoch 2.Embeddings and unembeddings. e Olah et al. (2020) demonstrated early layer neurons in vision
oy - . . . models often learn similar features.

Mechanistic Interpretability (mech interp) is a sub-field W. W,  Wo e We investigate universality systematically, by studying how
attemrtln? to rkeverse e{\glnger neturball networkbs.tltl claims SIoN - 6.95%  695% 9.58% networks solve the group composition task across different groups,
Eeura qetwor ?atl)rle n(I) ar_lrl]nscru ﬁ_ ﬁmesg, U dearn RESIDUAL  0.00%  0.00% 5.96% random seeds, and architectures.
I ur'rlj)?ntll: erprheI? €a QC]Zf” tmg, whicC C_a”h € ”_‘Ia e ; e We find networks always implement the GCR algorithm -
=egIbie throtigh hitiman Sfiort. LUF paperis heavily INSpIred § 3 MLP activations, and the map to logits. convincing evidence for weak universality.

by mech interp techniques. e However, the specific representations used vary, even if the

CLUSTER p(a) p(b) p(ab)  RESIDUAL - l . . . . .
. o ’ 0 0 0 : i architecture and data ordering is kept constant - evidence against
Modular Addition: Nanda et al. (2023) were able to STapARD  39.6% 371% 113% 1214 - St |- strong universality
. . . \{ ’ . U [ [ . ] n n n [
undgrstand grlo kklngr by ufsmg me;:h .mtzrl,? to rffverse i '_ LN e Interpreting a single network is insufficient to understand behaviour
rennogc;zleaerrao dn deitisxe;incg?nngsacu):‘rgjiiserri:'g?\s fng:: acr)mgntrig 4.Ablations. SP(C_I)N)' - i iIn general, but interpreting many networks may suffice give a

periodic table of universal features, that in aggregate explain

identity based algorithm. behaviour fully



